[1] IEA (2023), Global Energy and Climate Model, IEA, Paris iea.org/reports/global-energy-and-climate-model, License: CC BY 4.0
[2] Bax, V., van de Lageweg, W. I., van den Berg, B., Hoosemans, R., & Terpstra, T. (2022). Will it float? Exploring the social feasibility of floating solar energy infrastructure in the Netherlands. Energy Research & Social Science, 89(102569), 102569. doi.org/10.1016/j.erss.2022.102569
[3] Ranjbaran, P., Yousefi, H., Gharehpetian, G. B., & Astaraei, F. R. (2019). A review on floating photovoltaic (FPV) power generation units. Renewable and Sustainable Energy Reviews, 110, 332–347. doi.org/10.1016/j.rser.2019.05.015
[4] Contact us. (n.d.). Spglobal.com. Retrieved February 4, 2024, from spglobal.com/commodityinsights/en
[5] World Bank Group, Energy Sector Management Assistance Program, & Solar Energy Research Institute of Singapore. (2019). Where sun meets water. World Bank, Washington, DC. https://openknowledge
[6] Spencer, R. S., Macknick, J., Aznar, A., Warren, A., & Reese, M. O. (2019). Floating photovoltaic systems: Assessing the technical potential of photovoltaic systems on man-made water bodies in the continental United States. Environmental Science & Technology, 53(3), 1680–1689. doi.org/10.1021/acs.est.8b04735
[7] Sahu, A., Yadav, N., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824. doi.org/10.1016/j.rser.2016.08.051
[8] Lee, Y.-G., Joo, H.-J., & Yoon, S.-J. (2014). Design and installation of floating type photovoltaic energy generation system using FRP members. Solar Energy (Phoenix, Ariz.), 108, 13–27. doi.org/10.1016/j.solener.2014.06.033
[9] Suh, J., Jang, Y., & Choi, Y. (2019). Comparison of electric power output observed and estimated from floating photovoltaic systems: A case study on the Hapcheon Dam, Korea. Sustainability, 12(1), 276. doi.org/10.3390/su12010276
[10] Sahu, A., Yadav, N., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824. doi.org/10.1016/j.rser.2016.08.051
[11] Zhou, Y., Chang, F.-J., Chang, L.-C., Lee, W.-D., Huang, A., Xu, C.-Y., & Guo, S. (2020). An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies. Applied Energy, 275(115389), 115389. doi.org/10.1016/j.apenergy.2020.115389
[12] Boehrer, B., & Schultze, M. (2008). Stratification of lakes. Reviews of Geophysics (Washington, D.C.: 1985), 46(2). doi.org/10.1029/2006rg000210
[13] (N.d.). Illinois.gov. Retrieved February 4, 2024, from epa.illinois.gov/content/dam/soi/en/web/epa/documents/water/conservation/lake-notes/lake-stratification.pdf
[14] Chapter 9 stratification in deep lakes. (1975). In Physiological Limnology - An Approach to the Physiology of Lake Ecosystems (pp. 145–173). Elsevie
[15] Butcher, J.B., Nover, D., Johnson, T.E. et al. Sensitivity of lake thermal and mixing dynamics to climate change. Climatic Change 129, 295–305 (2015). doi.org/10.1007/s10584-015-1326-1
[16] Jane, S. F., Mincer, J. L., Lau, M. P., Lewis, A. S. L., Stetler, J. T., & Rose, K. C. (2023). Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Global Change Biology, 29(4), 1009–1023. doi.org/10.1111/gcb.16525
[17] Armstrong A, Page T, Thackeray SJ, Hernandez RR, Jones ID. Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees. Environ Res Lett 2020; 15:114055. doi.org/10.1088/1748-9326/abbf7b
[18] J. Kalff. Limnology: inland water ecosystems.Prentice Hall, Upper Saddle River, NJ (2002)
[19] Woolway, R.I., Sharma, S., Weyhenmeyer, G.A. et al. Phenological shifts in lake stratification under climate change. Nat Commun 12, 2318 (2021). doi.org/10.1038/s41467-021-22657-4
[20] Exley, G., Armstrong, A., Page, T., & Jones, I. D. (2021). Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy (Phoenix, Ariz.), 219, 24–33. doi.org/10.1016/j.solener.2021.01.076
[21] Ilgen, K., Schindler, D., Wieland, S., & Lange, J. (2023). The impact of floating photovoltaic power plants on lake water temperature and stratification. Scientific Reports, 13(1). doi.org/10.1038/s41598-023-34751-2
[22] Spellman, F. R., & Drinan, J. E. (2012). The drinking water handbook. CRC Press. doi.org/10.1201/b12305
[23] Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2(2), 161–173. doi.org/10.1007/s40899-015-0014-7
[24] Rubalcaba, J. G. (2024). Metabolic responses to cold and warm extremes in the ocean. PLoS Biology, 22(1), e3002479. doi.org/10.1371/journal.pbio.3002479
[25] Temperature, L. W. (n.d.). Indicators of climate change in California (2022). Oehha.ca.gov. Retrieved February 4, 2024, from oehha.ca.gov/media/epic/downloads/03lakewatertemps.pdf
[26] FAQ: Ocean deoxygenation. (n.d.). Scripps Institution of Oceanography. Retrieved February 4, 2024, from scripps.ucsd.edu/research/climate-change-resources/faq-ocean-deoxygenation
[27] Economical, political, and social issues in water resources. (2021). Elsevier. doi.org/10.1016/c2020-0-03830-2
[28] Characterization and treatment of textile wastewater. (2015). Elsevier. doi.org/10.1016/c2014-0-02395-7
[29] Dębska, K., Rutkowska, B., Szulc, W., & Gozdowski, D. (2021). Changes in selected water quality parameters in the Utrata River as a function of catchment area land use. Water, 13(21), 2989. doi.org/10.3390/w13212989
[30] (N.d.-b). Epa.gov. Retrieved February 4, 2024, from epa.gov/system/files/documents/2021-07/parameter-factsheet_do.pdf
[31] Wu, T., Wang, S., Su, B., Wu, H., & Wang, G. (2021). Understanding the water quality change of the Yilong Lake based on comprehensive assessment methods. Ecological Indicators, 126(107714), 107714. doi.org/10.1016/j.ecolind.2021.107714
[32] What is the typical water conductivity range? (2022, September 27). Atlas Scientific. atlas-scientific.com/blog/water-conductivity-range/
[33] Conductivity. (n.d.). DataStream. Retrieved February 4, 2024, from datastream.org/en-ca/guidebook/conductivity
[34] Angradi, T. R., Ringold, P. L., & Hall, K. (2018). Water clarity measures as indicators of recreational benefits provided by U.S. lakes: Swimming and aesthetics. Ecological Indicators, 93, 1005–1019. doi.org/10.1016/j.ecolind.2018.06.001
[35] de Lima, R. L. P., Paxinou, K., C. Boogaard, F., Akkerman, O., & Lin, F.-Y. (2021). In-situ water quality observations under a large-scale floating solar farm using sensors and underwater drones. Sustainability, 13(11), 6421. doi.org/10.3390/su13116421
[36] Patel, H., & Vashi, R. T. (2015). Characterization and Treatment of Textile Wastewater. Elsevier.
[37] Yang, P., Chua, L. H. C., Irvine, K. N., Nguyen, M. T., & Low, E.-W. (2022). Impacts of a floating photovoltaic system on temperature and water quality in a shallow tropical reservoir. Limnology, 23(3), 441–454. doi.org/10.1007/s10201-022-00698-y
[38] Amorim, C. A., & Moura, A. do N. (2021). Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. The Science of the Total Environment, 758(143605), 143605. doi.org/10.1016/j.scitotenv.2020.143605
[39] Anderson, C. R., Moore, S. K., Tomlinson, M. C., Silke, J., & Cusack, C. K. (2015). Living with harmful algal blooms in a changing world. In Coastal and Marine Hazards, Risks, and Disasters (pp. 495–561). Elsevier.
[40] Chlorophyll in transitional, coastal and marine waters in Europe. (n.d.). Europa.Eu. Retrieved February 1, 2024, from eea.europa.eu/en/analysis/indicators/chlorophyll-in-transitional-coastal-and?activeAccordion=ecdb3bcf-bbe9-4978-b5cf-0b136399d9f8
[41] Château, P.-A., Wunderlich, R. F., Wang, T.-W., Lai, H.-T., Chen, C.-C., & Chang, F.-J. (2019). Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. The Science of the Total Environment, 687, 654–666. doi.org/10.1016/j.scitotenv.2019.05.420
[42] Haas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, S. U., Nowak, W., & Chen, P.-J. (2020). Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206(112414), 112414. doi.org/10.1016/j.enconman.2019.112414
[43] World Health Organization. (2020). Cyanobacterial toxins: cylindrospermopsins (No. WHO/HEP/ECH/WSH/2020.4). World Health Organization.
[44] Farrar, L. W., Bahaj, A. S., James, P., Anwar, A., & Amdar, N. (2022d). Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan. Energy Conversion and Management, 260(115598), 115598. doi.org/10.1016/j.enconman.2022.115598
[45] Abd-Elhamid, H. F., Ahmed, A., Zeleňáková, M., Vranayová, Z., & Fathy, I. (2021). Reservoir management by reducing evaporation using floating photovoltaic system: A case study of Lake Nasser, Egypt. Water, 13(6), 769. doi.org/10.3390/w13060769
[46] Abdelal, Q. (2021). Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions. International Journal of Low-Carbon Technologies, 16(3), 732–739. doi.org/10.1093/ijlct/ctab001
[47] Bontempo Scavo, F., Marco Tina, G., Gagliano, A., & Nizetic, S. (2020). An assessment study of evaporation rate models on a water basin with floating photovoltaic plants. Int. J. Energy Res., n/a, 1–22. doi.org/10.1002/er.5170
[48] Santos, F. R. dos, Wiecheteck, G. K., Virgens Filho, J. S. das, Carranza, G. A., Chambers, T. L., & Fekih, A. (2022). Effects of a floating photovoltaic system on the water evaporation rate in the Passaúna Reservoir, Brazil. Energies, 15(17), 6274. doi.org/10.3390/en15176274
[49] Padilha Campos Lopes, M., de Andrade Neto, S., Alves Castelo Branco, D., Vasconcelos de Freitas, M. A., & da Silva Fidelis, N. (2020). Water-energy nexus: Floating photovoltaic systems promoting water security and energy generation in the semiarid region of Brazil. Journal of Cleaner Production, 273(122010), 122010. doi.org/10.1016/j.jclepro.2020.122010
[50] Wollschläger, J., Neale, P. J., North, R. L., Striebel, M., & Zielinski, O. (2021). Editorial: Climate change and light in aquatic ecosystems: Variability & ecological consequences. Frontiers in Marine Science, 8. doi.org/10.3389/fmars.2021.688712
[51] Ayala Pelaez and Deline, (2020). bifacial_radiance: a python package for modeling bifacial solar photovoltaic systems. Journal of Open Source Software, 5(50), 1865, doi.org/10.21105/joss.01865
[52] German Environment Agency (2017): Waters in Germany: Status and assessment. Dessau-Roßlau.
[53] Sun, J., Zheng, H., Xiang, H., Fan, J., & Jiang, H. (2022). The surface degradation and release of microplastics from plastic films studied by UV radiation and mechanical abrasion. The Science of the Total Environment, 838(156369), 156369. doi.org/10.1016/j.scitotenv.2022.156369
[54] Mathijssen, D., Hofs, B., Spierenburg-Sack, E., van Asperen, R., van der Wal, B., Vreeburg, J., & Ketelaars, H. (2020). Potential impact of floating solar panels on water quality in reservoirs; pathogens and leaching. Water Practice & Technology, 15(3), 807–811. doi.org/10.2166/wpt.2020.062
[55] IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 582 pp.